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Abstract

A number of results focusing on the implications brought by the violation of the inter!laminar shear
traction continuity requirement on the non!linear response of shear deformable laminated ~at and curved
panels subjected to thermomechanical loading are presented[ The results cover a large number of situations\
and in this context\ the e}ects of transverse shear\ tangential edge constraints\ shell curvature\ initial
geometric imperfections\ lateral pressure and compressive edge loads\ membrane and thicknesswise tem!
perature gradient\ presence of a Winkler linear:non!linear foundation\ coupled with that of the ful_l!
ment:violation of the shear traction interlaminar continuity requirement upon the static and dynamic non!
linear response of laminated plates and shells are highlighted[ In order to address this problem\ as a necessary
pre!requisite\ a higher!order geometrically non!linear laminated shell model ful_lling both the kinematical
and shear traction interlaminar continuity requirements and incorporating the previously mentioned e}ects
is presented[ The results obtained in the framework of this laminated shell model are compared with the
ones obtained within a higher!order shell model in which the kinematic interlaminar continuity conditions
are solely satis_ed\ and the implications resulting from the violation of the shear traction interlaminar
continuity requirement are highlighted[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

aab\ aab covariant and contravariant components of the metric tensor of the undeformed
mid!surface s

T\ L\ S\ K\ b½\ c½ sti}ness quantities
bab curvature tensor of the undeformed mid!surface
b00"00:R0#^ b11"00:R1# principal curvatures of s

cab 1!D permutation symbol
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D ~exural sti}ness
eab\ ea2 2!D tangential and transverse shear strain components
E\ E? Young|s modulus\ tangential and transversal to the isotropy surface
Ekjrs\ Fijrs tensor of elastic coe.cients and the compliance elastic tensor\ respectively
f"x2# function characterizing the variation of sa2 in the thickness direction
wmn\ w� mn amplitudes in the mode "m\ n# of v2\ v�2

Fv"xa# functions de_ning the tangential variation of sa2

G\ G? tangential and transverse shear modulus\ respectively
h total thickness of shell:plate
H mean curvature of s

K1 transverse shear correction factor
KÞ0\ KÞ2\ "K0\ K2# linear and cubic Winkler|s foundation moduli "their dimensionless counterparts#
l0\ l1 length and width of the ~at:curved panel
L00\ L11 dimensionless compressive edge loads\ positive in compression

"0"N00\ N11#l1
0:p

3D#
LR edge load ratio L11:L00"0N11:N00#
N00\ N11 edge loads normal to the edges x0 � 9\ l0 and x1 � 9\ l1\ respectively\ positive in

compression
Nab\ Mab\ Qa2 tensors of stress resultants\ stress couples and transverse shear stress resultant\

respectively
p2\ pmn\ p¼ "0p00l

3
0:"Dh## lateral pressure _eld\ and its amplitude in the mode "m\ n# and the
dimensionless amplitude in the mode "0\ 0#\ respectively

Sij second PiolaÐKirchho} stress tensor
tc\ tf thickness of the core and of upper or bottom facings\ respectively
t time variable

Tý "xa#\ T
0

"xa# membrane and thicknesswise temperature distributions

Týmn\ T
0

mn amplitudes in the mode "m\ n# of Tý and T
0

\ respectively

Tý "0Tý00#\ T
0

"0T
0

00# notations used in numerical illustrations to denote the amplitude in the mode

"0\ 0# of the temperatures Tý "xa# and T
0

"xa#\ respectively
Tu\ Tb temperature amplitudes in mode "0\ 0# of the temperature distribution over the

upper and bottom shell surfaces\ respectively
va\ v2 tangential and transversal displacement quantities of the mid!surface of plate:

shell
v�2 initial geometric imperfection
xi curvilinear system of normal coordinates
c\ c0 Airy|s potential function and particular solution of eqn "12#\ respectively
f\ Fv functions associated with transverse shear
lm\ mn\ mp:l0\ np:l1l0\ l1 sti}ness of the supports along the edges x0 � 9\ l0 and x1 � 9\ l1\ respec!

tively\ in the tangential directions\ to the mid!surface normal to the edge[
l\ l?"a\ a?# thermal expansion "compliance# coe.cients in the tangential and transversal

direction to the isotropy surface\ respectively
d9"0w� 00:h#\ d"0w00:h# dimensionless amplitudes of the transverse de~ection and of initial

geometric imperfection\ respectively
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di
j Kronecker delta

D0 end!shortening in the x0!direction
v1\ v¹ 1 fundamental frequency squared and its dimensionless counterpart\ respectively
"=#f\ "=#c quantities a.liated with face and core layers\ respectively
s mid!surface of the undeformed laminated structure
L\ P stretching and bending thermal sti}ness quantities\ respectively
L	 modi_ed stretching thermal sti}ness
n\ n? Poisson|s ratios tangential and transversal to the isotropy surface\ respectively
" #\i partial di}erentiation with respect to coordinates xi

" #>i\ " # =a covariant di}erentiation with respect to the metric tensor `ij and aab\ respectively[
"=#ðrŁ\ "=#"r# a.liation of "=# to the rth layer and to the interlaminar surface de_ned by x2 � hr\

respectively[

0[ Introduction

The static and dynamic behaviour of mechanically and thermally loaded ~at and curved panels
is a problem of considerable relevance in the design and development of supersonic:hypersonic
vehicles\ of future reusable space transportation\ launch vehicles and of advanced propulsion
systems[ During their missions\ the structure of ~ight vehicles have to withstand severe aero!
dynamic\ aeroacoustic and thermomechanical loads[ The temperatures involved are likely to range
from the extreme lows of cryogenic fuels and radiation to space\ to the highs associated with
aerodynamic heating\ heat from propulsion unit and radiation from the Sun[ In spite of the
increased ~exibility which is likely to characterize the structure of next generations of advanced
~ight vehicles\ they have to be able to ful_l a multitude of missions in complex environmental
conditions and feature an expanded operational envelope[ The same is valid with the reusable
space vehicles\ which\ for evident reasons\ require a prolongation of their operational life\ without
impairing upon the security of ~ight[ A problem of evident importance towards the rational design
of advanced supersonic:hypersonic ~ight vehicles lies in the possibility to accurately determine the
load carrying capability of their structure[ Moreover\ a better understanding of conditions yielding
an enhancement of the load carrying capacity\ can dramatically contribute to the increase in
performance of these ~ight vehicles[ For curved panels such an investigation has a special signi_!
cance[ Indeed\ in contrast to ~at panels which experience a considerable amount of additional
load!carrying capability in the postbuckling range\ the curved panels exhibit a highly unstable
postbuckling behavior\ manifested by snap!through jumps toward a state of stable equilibrium[
Such snapping jumps are manifested in both the static case "i[e[ in the case e[g[ of the temperature:
compressive load vs transverse de~ection response#\ and of the dynamic case "i[e[ of eigenfrequency
vs temperature:compressive load interaction#[ In addition\ the load carrying capacity of curved
panels is imperfection sensitive[ It appears evident that reduction of the intensity of the snapping
phenomenon and of the sensitivity to initial geometric imperfection\ in general\ and the accurate
evaluation of the load carrying capacity\ in particular\ are of considerable importance toward a
prolonged and exhaustive use of curved panels in the postbuckling range[

One of the modern trends in the construction of advanced ~ight vehicles capable of operating
in a high temperature environment\ consists of the ongoing incorporation in their structure of
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advanced composite materials[ However\ as a result of this trend and for a reliable determination
of their load carrying capacity\ a careful assessment of the implications played by a number of
non!classical e}ects is required[ One of these is related with the transverse shear ~exibility featured
by advanced composites\ and\ in this connection\ the problem of adequacy of LoveÐKirchho}
shell model when dealing with thermomechanical load carrying capacity has to be addressed[

Another e}ect which was identi_ed as the main cause of the large discrepancies between the
experimental and theoretical predictions of buckling loads\ and which can a}ect dramatically the
load carrying capabilities of curved structures exposed to thermomechanical loading is the initial
geometric imperfection[

The recent developments related with solid!propellant rocket motors\ as well as the interest of
specialists for developing further e.cient thermal protection systems of space transportation
vehicles have intensi_ed the need for a better understanding of the non!linear response of geo!
metrically perfect:imperfect shells continuously supported by elastic media and subjected to com!
bined thermomechanical loadings[ This issue will also be addressed in this paper[

Determination of frequencyÐtemperature and frequencyÐload interactions in the pre:
postbuckling ranges of curved panels featuring transverse shear ~exibility\ initial geometric imper!
fection\ is of prime importance towards a reliable prediction of the aeroelastic behavior\ ther!
moacoustic fatigue as well as of the dynamic response under time dependent external excitation of
supersonic:hypersonic ~ight vehicle structures[

Another e}ect which becomes relevant in the context of multilayered shells composed of
advanced composite materials is of a modeling nature[ This e}ect is related with the non!ful_lment
of the continuity requirement of transverse stresses at the layer interfaces[ As was revealed in a
number of recent papers "see e[g[ Timarci and Soldatos\ 0884^ Xavier et al[\ 0884^ Di Sciuva and
Icardi\ 0885^ Librescu and Lin\ 0885^ Carrera\ 0885\ 0887^ Carrera and Kroplin\ 0886^ Librescu et
al[\ 0886#\ the violation of this requirement can result in unavoidable errors in the evaluation of
the global response of laminated composite structures[ These errors can even be exacerbated when
the constituent materials exhibit large variations of transverse shear moduli from layer to layer[
The assessment of the implications of the violation of this requirement\ considered in conjunction
with the other e}ects\ previously mentioned\ constitutes the basic goal of this paper[ The impli!
cations induced by the non!ful_lment of the interlaminar shear traction continuity conditions upon
the thermomechanical non!linear response will be analyzed by comparing the predictions based
upon the shell:plate structural model developed in the papers by Librescu and Chang "0881\ 0882#\
Librescu et al[ "0882\ 0884#\ Librescu and Lin "0886a\ b# with their counterparts\ obtained in the
context of a theory ful_lling this requirement[ Towards the goal of elucidating this problem\ the
basic kinetic equations associated with geometrically non!linear shell model ful_lling both the
kinematic and static interlaminar continuity requirements will shortly be presented[

To the best of the authors| knowledge\ geometrically non!linear theories of laminated shells
ful_lling the interlaminar continuity conditions have been developed\ in specialized contexts\ in
Librescu et al[ "0886#\ Librescu and Schmidt "0880#\ Di Sciuva "0881#\ Schmidt and Librescu
"0883#\ Pai and Nayfeh "0883#\ He "0884#[ For the sake of identi_cation\ in the forthcoming
developments\ the model ful_lling both interlaminar requirements is labeled as Model II\ while the
one violating the static interlaminar continuity requirement\ as Model I[

In spite of the evident importance\ studies devoted to this topic are extremely scarce\ a fact
which clearly emerges from the recent papers surveying the state!of!the!art of laminated shells "see
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e[g[ Noor and Burton\ 0889\ 0881^ Reddy and Robbins\ 0883^ Librescu and Lin\ 0885#[ To the
best of the authors| knowledge\ the available results addressing several of these issues restricted to
linear response and static postbuckling of plates and shells subjected to compressive edge loads\
have been presented by Librescu and Lin "0885# and Librescu et al[ "0885#\ respectively[ The goal
of the paper is to supply additional information on this topic\ by considering the static and dynamic
non!linear response of laminated shell:plate structures when exposed to edge compression\ lateral
pressure and a temperature _eld\ and by including additional e}ects not yet considered so far[

1[ Preliminaries

Although the numerical illustrations will be applied to three!layer laminated shells and plates\
for the sake of generality\ the theory concerns the case of symmetric laminates constructed of
1m¦0 "m � 0\ 1\ [ [ [# laminae\ the constituent material layers featuring monoclinic symmetry
properties with respect to the global mid!surface of the structure[ One assumes that the layers are
in perfect bond\ implying that no slip or debonding between two contiguous layers may occur[
The employed notations follow\ mainly\ the ones used in Librescu and Chang "0881#\ Librescu et
al[ "0882\ 0884# Librescu and Lin "0886a\ b#[ Accordingly\ the points of the 2!D shell space are
referred to a set of curvilinear normal system of coordinates xi\ where xa "a � 0\ 1#\ denote the
tangential coordinates\ x2 "x2 ¾ =h:1=#\ being the normal coordinate to the reference surface s

selected to coincide with the mid!surface of the mid!layer\ while h denotes the uniform thickness
of the plate or shell[

The present study will be carried out in the context of the shallow shell theory "henceforth
abbreviated as the SST#[

Denoting by Z"0Z"xv## the amount of deviation of the shell reference surface from its projection
to a plan P\ it is assumed that this quantity is small when compared with a maximum length of an
edge of the shell\ or with the minimum radius of curvature of s[ Postulating "see e[g[ Green and
Zerna\ 0857# that

max"1Z:1xv# ð 0 "0#

it results that the metric tensors associated with the system of coordinates on s and with its
projection on the plane P are the same and\ in addition\ that the curvature tensor of the reference
surface behaves as a constant in the di}erentiation operation[ Consistent with the assumptions
proper to the SST\ we may appropriately consider

ma
b"0da

b−x2ba
b# : da

b and "m−0#a
b : da

b "1a\b#

where ma
b and its inverse "m−0#a

b play the role of shifters in the space of normal coordinates "see
Naghdi\ 0852^ Librescu\ 0864#[ In eqns "1#\ da

b and ba
b denote the Kronecker delta and the mixed

curvature tensor\ respectively[ In addition\ by virtue of the same assumptions we may obtain for
the SST

m 0 =ma
b = � 0−1x2H¦K"x2# : 0 "2#

where H and K denote the mean and Gaussian curvatures of s\ respectively[ Moreover\ by virtue
of eqns "1#\ for the SST there is valid also
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`ab � aab^ `ab � aab "3#

where `ij"`ij# and a aab"aab# denote the covariant "contravariant# space and mid!surface metric
components\ respectively[

In order to reduce the 2!D elasticity problem to an equivalent 1!D one\ the equations connecting
the covariant derivatives of space tensors with their surface counterparts "identi_ed by an overbar#
are used[ Several such relations restricted to the case of shallow surfaces are displayed next]

Ta>b � TÞa=b−babTÞ2^ Ta>2 � TÞa\2

T2>a � TÞ2\a¦bn
aTÞn^ TÞ2>2 � TÞ2\2

Tab
>g � TÞab

=g −bb
gTÞ

a2−ba
gTÞ

2b[ "4aÐe#

These relationships "as well as the other ones not presented here# can be obtained by specializing\
in the spirit of "1#Ð"3# for the SST case\ the more general ones obtained for the theory of deep
shells in Naghdi "0852# and Librescu "0864#[

Here and in the following\ partial di}erentiation is denoted by a comma "=#\i 0 1"=#:1xi\ while
" #>i and " # =a stand for the covariant di}erentiations with respect to the space and surface metric\
respectively\ while the shifted components are identi_ed by an upper bar[ In the above relationships
"as well as in the following developments#\ the usual summation convention for the repeated
indices is implied\ where Latin indices range from 0Ð2 while the Greek indices range from 0Ð1[ In
addition\ a subscript or superscript in the brackets {ð Ł| attached to any quantity identi_es its
a.liation to the k!th layer[ In spite of mathematical simpli_cations implied by the adoption of the
shallow shell theory\ the obtained results are rather general\ being applicable to large categories of
aeronautical structures[ Moreover\ this theory enables one to cast the geometrically non!linear
equations in a form representing the generalized counterpart of the classical von Ka�rma�nÐMush!
tariÐMarguerre large de~ection shell theory[ Such a form of the governing equations was proven
to be of an exceptional usefulness in buckling and post!buckling studies[

2[ Structural model

In order to develop the laminated shells theory within the Model II\ the following steps are
followed]

2[0[ Transverse shear stress distribution

In the absence of shear tractions on the outer bounding surfaces x2 � 2h:1 of the shell\ the
following variation of transverse shear stresses across the thickness of each k!th layer is postulated
"see Librescu and Lin\ 0885^ Librescu et al[\ 0886#

Sa2
ðkŁ"xl\ x2^ t# � Ea2v2

ðkŁ f "x2#Fv"xl^ t#¦Ba
"k# "xl^ t#[ "5#

A similar representation of transverse shear stresses proposed by Ambartsumian "0856# within the
linear theory of laminated plates was further used in Librescu and Reddy "0875#[

In eqn "5#\ f "x2# is the function characterizing the variation of Sa2 across the shell thickness\
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Fig[ 0[ Geometry of the cross!section of a symmetrically laminated shell[

while t is the time variable[ For the present case\ f is represented as an even function in the thickness
coordinate in the sense of f "x2# � f "−x2#\ and in order to ful_l the free traction condition on
x22h:1\ one assumes\ in addition "see Fig[ 0#

f "h0# � f "h1m¦0# � 9\ "6#

where h0 and h1m¦0 de_ne the location of the upper and bottom faces of the laminate\ respectively\
measured from the shell mid!surface[ In addition\ Fv"0Fv"xl^ t##\ are yet unknown functions
determining the shape of variation of Sa2 in the surfaces parallel to the mid!surface\ while
Ba

"k# "0Ba
"k# "xv^ t## are functions to be determined upon ful_lling the continuity requirement for

interlaminar shear stresses

Sa2
ðkŁ =x2�hk

� Sa2
ðk−0Ł =x2�hk

[ "7#

Following further the procedure outlined in Librescu and Lin "0885# and Librescu et al[ "0886#\
with the help of eqns "7# the expression of transverse shear stresses\ eqn "5# modi_es as
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Sa2
ðkŁ"xl\ x2^ t# � ðEa2v2

ðkŁ f"x2#¦Aa2v2
"k# ŁFv"xl^ t# "8a#

where

Ba
"k# "xl^ t# � Aa2v2

"k# Fv"xl^ t#[ "8b#

In eqns "7# and "8# Sa2 denote the transverse shear components of the second PiolaÐKirchho}
stress tensor Sij\ while

Aa2v2
"k# � − s

k

r�1

f "hr#ðEa2v2
ðrŁ −Ea2v2

ðr−0ŁŁ[ "09a#

Upon imposing also the condition ðx2Sa2Łh:1
−h:1 � 9\ and having in view the symmetry of the

construction which implies that Ea2v2
ðrŁ � Ea2v2

ð1m¦1−rŁ\ one also obtains

Aa2v2
"r# � Aa2v2

"1m¦1−r# 6
for r � 0

�9 for r � 0
[ "09b#

As can easily be inferred from eqns "8# and "09#\ in case of mild variations of transverse shear
moduli\ implying Ea2v2

ðiŁ ¼ Ea2v2
ði−0Ł and hence Aa2v2

"i# : 9\ ful_lment of the interlaminar shear traction
continuity requirement turns out to be quite a redundant matter[ As a result\ ful_lment of this
condition has to be enforced whenever the materials of the laminae exhibit signi_cant jumps in
transverse shear moduli from layer to layer[ In the previous equations\ the subscript r in the
brackets " # attached to any quantities indicate their belonging to the interlamina surface de_ned
by x2 � hr[

2[1[ Tan`ential displacements in the thickness direction

Assuming that the structure features a stress!free small initial geometric imperfection
Vý 2"xv\ x2^ t#"0v�2"xv^ t##\ considered to be positive when it is towards the downward direction and
adopting the concept of small strains and moderately small rotations "Librescu\ 0876#\ the 2!D
strainÐdisplacement relationship in Lagrangian description is]

1eij � Vi>j¦Vj>i¦V2>iV2>j¦V2>iVý2>j¦Vý2>iV2>j\ "00#

where Vi"0Vi"xv\ x2^ t## denote the 2!D displacement components[
Postulating that

V2"xv\ x2^ t# � v2"xv^ t#\ "01#

from eqn "00# one can extract the 2!D expression of transverse shear strains expressed in terms of
displacement components as

1eðkŁ
l2 � VðkŁ

l>2¦VðkŁ
2>l[ "02#

Employment in eqn "02# of the relationships connecting covariant derivatives of space and surface
tensors specialized for shallow shell theory\ eqns "4# used in conjunction with the constitutive
equations for eðkŁ

l2
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eðkŁ
l2 � 1FðkŁ

l2m2S
m2
ðkŁ\ "03#

as well as with eqn "8#\ yields

VðkŁ
l\2 � 3FðkŁ

l2m2 ðEm2g2
ðkŁ f "x2#¦Am2g2

"k# ŁFg−v2\l−br
lV

ðkŁ
r [ "04#

In eqn "04#\ FðkŁ
l2m2 stands for the compliance components corresponding to El2v2

ðkŁ \ related by
El2v2

ðkŁ FðkŁ
l2b2 � dv

b :3 "see Librescu\ 0864#[
Integration of eqn "04# with respect to x2 in the interval ð9\ x2# and employment of eqn "01#

yields]

VðkŁ
l "xv\ x2^ t# � V
ðkŁ

l −x2v2\l¦Fg ðdg
gJ9"x2#¦3x2FðkŁ

l2m2A
m2g2
"k# Ł[ "05#

In eqn "05#

J9"x2# � g
x2

9

f "x2# dx2\ "06#

where V
ðkŁ
l "0V
ðkŁ

l "xv^ t## are arbitrary functions of integration[ Upon ful_lling the kinematic
interlaminar continuity conditions

Vðk¦0Ł
l =x2�hk

� VðkŁ
l =x2�hk

"07#

and having in view that

ðm¦0ŁVl =x2�9¦ � ðm¦0ŁVl =x2�9− 0 vl"xv^ t# "08#

represent the displacement components of the mid!surface of the laminate mid!layer\ one obtains

ðkŁV
l"xv^ t# � vl−3"k#Vg
=lFg sgn x2\ "k � 0\ 1\ [ [ [ \ m# "19#

where sgn x2 "�0 for x2 × 9^ � 9 for x2 � 9 and � −0 for x2 ³ 9#\ denotes the signum distribution\
while

"k#Vg
=l � s

k

r�1

hr−0 ðFðrŁ
l2m2A

m2g2
"r# −Fðr−0Ł

l2m2 Am2g2
"r−0#Ł[ "10#

Upon invoking the symmetry of the laminate with respect to its mid!surface\ it results
"k#Vg

=l � "1m¦1−k#Vg
=l and "m¦0#Vg

=l � 9[ Equations "05# considered in conjunction with eqn "19#
reveals that in the context of this theory\ the tangential displacement components assume a non!
linear variation in the thickness direction\ its character being decided by the character of the
variation of J9"x2# in the thickness direction[

2[2[ Tan`ential strain representation

Upon invoking in eqn "00# the relationships between covariant derivatives of 2!D and surface
tensors\ in conjunction with eqns "05# and "19#\ one obtains

ðkŁeab � −x2v2=ab¦
0
1
J9"x2#"Fa=b¦Fb=a#¦1x2"FðkŁ

a2m2A
m2g2
"k# Fg=b¦FðkŁ

b2m2A
m2g2
"k# Fg=a#

−1""k#Vg
=aFg=b¦

"k#Vg
=bFg=a# sgn x2¦0

1
"va=b¦vb=a−1babv2#¦v2\av2\b¦v2\bv�2\a¦v�2\av2\b "11#
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Equation "11# reveals that the tangential strain components feature a variation through the shell
thickness\ similar to that of tangential displacement components\ eqn "05#[

2[3[ Constitutive equations

As is well known "see e[g[ Malvern\ 0858#\ the 2!D elasticity theory implying small strains but
large displacement gradients can be described by linear constitutive equations relating second
PiolaÐKirchho} stress tensor Sij with Lagrangian strain tensor eij[

As a result\ postulating as usual that transverse normal stress component S22 in constitutive
equations is negligibly small compared with the other stresses\ and proceeding to the elimination
of the transverse normal strain e22\ the 2!D constitutive equations pertinent to a material featuring
monoclinic symmetry properties become

Sab � E	abvrevr¦l½abT^ Sa2 � 1Ea2v2ev2\ "12a\b#

where

E	abvr � Eabvr−
Eab22E22vr

E2222
^ l½ab � lab−

Eab22

E2222
l22[ "13#

In these equations Eijmn and lij denote the tensors of elastic moduli and of the thermal compliance
coe.cients\ respectively\ assumed to be temperature independent\ while T"0T"xv\ x2## denotes
the temperature rise from a stress!free reference temperature Tr[

Employment\ in conjunction with eqns "11# and "12# of expressions de_ning within the SST the
"membrane Lab and transverse shear Qab# stress resultants\ and stress couples Mab\ namely

"Nab\ Mab# � 1g
hm¦0

9

Sab
ðm¦0Ł"0\ x2# dx2¦1 s

m

r�0 g
hr

hr−0

Sab
ðr−0Ł"0\ x2# dx2\ "14a#

Qa2 � 1 g
hm¦0

9

Sa2
ðm¦0Ł dx2¦1 s

m

r�0 g
hr

hr−0

Sa2
ðr−0Ł dx2\ "14b#

yields the constitutive equations of the shell theory]

Nab � Fabvrovr¦LabTý "15a#

Qa2 � Ka2v2Fv "15b#

Mab � −Dabvrv2\vr¦"Tabvr¦Labvr−Sabvr#"Fv=r¦Fr=v#¦PabT
0

[ "15c#

Herein oab denotes the membrane strain tensor de_ned as

oab � 0
1
"va\b¦vb\a−1babv2#¦v2\av2\b¦v2\av�2\b¦v�2\av2\b "16#

and T
9

"0T
9

"xv## and T
0

"0T
0

"xv## de_ne the membrane and thicknesswise temperature distributions\
respectively\ in whose terms the 2!D temperature _eld is expressed as

T"xv\ x2# � Tý "xv#¦x2T
0

"xv#[ "17#
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Herein\ Tý �"Tu¦Tb#:1 and T
0

�"Tb−Tu#:h\ where Tu � T"xv\ −h:1# and Tb � T"xv\ h:1#[ In
addition\ Fabvr\ [ [ [ \ Labvr and Lab\ Pab denote the elastic and thermal sti}ness quantities\ respec!
tively\ whose expressions are displayed in Appendix 0[

The previously displayed kinematic equations contain _ve unknown functions\ namely three
kinematic quantities\ va"xv^ t#\ v2"xv^ t# and the two static ones\ Fa"xv^ t#[ As a result\ in order to
generate the governing equations expressed in terms of these functions\ _ve 1!D equations of
motion are needed[

These are obtained by taking the various moments of the equations of equilibrium of the 2!D
non!linear elasticity theory

ðSjr"di
r¦Vi>r¦Výi>r#Ł> j

� r9VÝ
i[ "18#

Use of the approximation proper to the shallow shell theory\ followed by the consideration in eqns
"18# of moments of order zero and one of the equations corresponding to i � 0\ 1 and of the
moment of order zero of the equations corresponding to i � 2\ with the help of eqns "4# and "01#\
by discarding the tangential and rotary inertia terms\ one obtains the two!dimensional equations
of motion as]

Nab =b � 9^ Mab =b−Qa2 � 9\ "29a\b#

braN
ar¦Nar"v2\b¦v�2\b# =a¦Qa2 =a¦p2 � m9v�2 "29c#

where p2"0p2"xv## denotes the distributed transversal load\ m9"01ðrðm¦0Łhm¦0

¦Sm
r�0 rðmŁ"hr−hr−0Ł# stands for the reduced mass\ while the superposed dots denote time deriva!

tives[
Upon expressing Nab in terms of the Airy|s potential function c"0c"xv^ t# as

Nab � cavcbrc =vr\ "20#

where cab denotes the 1!D permutation symbol\ eqn "29a# is identically satis_ed[ In this case\ the
compatibility equation associated with the membrane strains oab has to be included as a primary
equation of the non!linear boundary!value problem[ It is

capcbl ðoab=pl¦
0
1
v2=arv2=lp¦

0
1
v�2=plv2=ab¦

0
1
v2=plv�2=ab¦babv2=plŁ � 9[ "21#

3[ Governing system

For the problem to be studied in the present paper\ a most convenient representation of the
governing equations is in the form constituting the extended counterpart of the classical von
Ka�rma�nÐMushtariÐMarguerre large de~ection shell theory[ To this end\ and in order to simplify
the problem without impairing upon the generality of the conclusions\ a special type of anisotropy
of the constituent materials will be considered[ The anisotropy is of a transversely!isotropic type\
where the surface of isotropy is parallel at each point to the mid!surface s[

Due to the distinct thermomechanical properties in the transverse and tangential directions to
the shell mid!surface\ these materials "known as pyrolyticÐgraphite materials#\ are good candidates
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for being used in the design of the thermal protection of aerospace vehicles and engine nozzles "see
e[g[ Woods\ 0865#[

For such a material\ the expressions of the thermo!elastic moduli are "see Librescu\ 0864#

E	abvr �
E

0¦n $
0
1
"aavabr¦avbaar#¦

n

0−n
avraab%\

Ea2v2 � G?aav\ l½ab � l½aab 0 lAaab "22aÐc#

where

A �

F

j

J

f

0−
En?

E?"0−n#
l?
l

for transversely!isotropic materials

0−1n

0−n
for isotropic materials[

"23#

E"E?#\ n"n?#\ l"l?# are the Young|s modulus\ Poisson|s ratio and thermal compliance coe.cient
in the plane of isotropy "transversal to the plane of isotropy#\ and G? is the transverse shear
modulus[

As usual\ the ratio E:G? constitutes a measure of the transverse shear ~exibility of the material[
Adoption of LoveÐKirchho} shell model requires that E:G? : 9\ this reverting to the conclusion
that in the context of the classical shell model\ the constituent materials feature an in_nite sti}ness
in transverse shear "i[e[ that G? : �#[

As a _rst step towards obtaining the governing equations\ the expression of oab obtained from
eqn "15a# under the form

ops � PabpsL
ab−L	psTý "24#

used in conjunction with eqn "20#\ is replaced in eqn "25#[ Here Pabpr is the inverse of Fabvp in the
sense of

PablsF
abvr � 0

1
"dv

l dr
s¦dr

ld
v
s # "25#

and

L	ps � PabpsLab[ "26#

In such a way\ for the considered type of material anisotropy\ one of the governing equations
expressed in terms of c and v2 is obtained and is given by

"b½¦c½#c=lp
lp¦

0
1
"v2 =rrv2 =ll−v2 =lrv2 =rl#¦"v�2 =ppv2 =aa−v�2 =pav2 =ap#¦"1Hv2 =pp−bb

lv2 =lb#¦L	Tý =aa � 9
"27#

where b½\ c½ and L	 are de_ned in Appendix 1[
At this point\ the equations of motion\ "29b\c# in conjunction with the constitutive eqns "15b\c#

for the case of transversely!isotropic materials are used[ As a result\ one obtains

−Dv2 =ab
b ¦"T0¦L0¦S0#Fa =bb¦"T1¦L1¦S1#Fb =ab−KFa¦PT

0

=a � 9\ "28a#
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KFa =a¦barN
ar¦Nar"v2\b¦v�2\b# =a¦p2 � m9v�2[ "28b#

Following the procedure developed in a number of previous works e[g[ in Librescu and Chang
"0881\ 0882#\ Librescu and Lin "0885# and Librescu "0864#\ upon expressing F a"xv^ t# in terms of
a new potential f"xv^ t# as

KFa � −cvaf=v−Dv2 =ab
b −

0
K

"T¦L¦S#"p2 =a−m9v�2 =a

¦ðNvr"v2=vr¦v�2=vr#Ł =a¦brvNvr =a#¦PT
0

=a "39#

and using the representation for Nab given by eqn "20#\ two governing equations are obtained[
These are

Dv2 =ab
ab−cvacrb 6brvc=ab¦"v2=vr¦v�2=vr#c=ab−

T¦L¦S

K
"brvc=ab¦c=ab"v2=rv¦v�2 =rv## =ss7

−0p2−
T¦L¦S

K
p2 =aa1¦m9 0v�2−

T¦L¦S

K
v�2 =aa1−PT

0

=aa � 9 "30a#

and

f−
T0¦L0¦S0

K
f=aa � 9[ "30b#

In these equations D\ T"0T0¦T1#\ L"0L0¦L1#\ S"0S0¦S1# and K are sti}ness quantities
whose expressions are recorded in Appendix 1[ In addition "=# =aa and "=# =ab

ab denote the 1!D Laplace
and biharmonic operators\ respectively^ 1H"0baba

ab �"0:R0¦0:R1## denotes the mean curvature
of s\ where Ra denote the principle radii of curvature of s[

Equations "27# and "30a\b# represent the governing system of partial di}erential equations
pertinent to the geometrically non linear theory of shallow shells\ symmetrically laminated of
transversally isotropic material layers[ In these equations the higher!order e}ects\ the temperature\
the dynamic and the initial geometric imperfection e}ects have been included[

The previously obtained governing equation system constitutes the generalized counterpart of
that previously obtained in di}erent contexts "see Librescu and Chang\ 0881\ 0882^ Librescu et al[\
0882\ 0884^ Librescu and Lin\ 0885#[ It should be underlined that in this form\ the governing
system is similar to the one obtained in the previously mentioned papers where only the kinematic
continuity requirement was ful_lled[ The di}erence occurs in the expressions of sti}ness quantities
only[ The correspondence between the two group of sti}ness quantities is]

CtT0¦L0¦S0^ StK BtT1¦L1¦S1[ "31aÐc#

The correspondence sign {t| is intended to suggest that the group of governing eqns "27# and
"30a\b# pass into its counterpart\ obtained without ful_lling the transverse shear stress continuity
requirement\ and vice versa\ when the change of sti}ness quantities indicated in eqns "31# is carried
out[

As concerns the sti}ness quantities not involved in these correspondence\ i[e[ D\ b½\ c½\ P\ L\ L	\
these remain unchanged in the two structural models[ The expressions of the sti}ness quantities
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C\ B and S are displayed in Appendix 2[ The classical counterpart of the previously obtained
governing system\ is obtained by letting K : �[

In the case of a single layered shell\ in the sti}ness quantities "see Appendices 0 and 1#\ the
specializations

hm¦0 : h:1\ s
r�0

"=# : 9 "32a\b#

have to be carried out[ In the case involving eqns "32#\ when f"x2# is considered to be
f"x2# �"x2#1−h1:3\ it can readily be veri_ed that the governing equations associated with the two
structural models collapse into a unique one\ coinciding with the one derived by Librescu "0864#[
This expression will be also considered in the numerical illustrations displayed in this paper[ For
other representations of f"x2# see Ambartsumian "0856#[

In the case of the shell supported on the inner surface by a Winkler non!linear elastic foundation\
p2 in eqn "30a# should be modi_ed as "see also Librescu and Lin\ 0886#

p2"xv# : p¼2−"KÞ0v2¦KÞ2"v2#2#\ "33#

where p¼2"0p¼2"xv## denotes the distributed lateral pressure acting on the outer face of the shell\
while KÞ0 and KÞ2 are the linear and cubic Winkler foundation moduli\ respectively[

It should be mentioned that the linear eqn "30b#\ of a Helmholtz!type\ de_nes the boundary!
layer e}ect[ Its solution is characterized by a rapid decay when proceeding from the edges towards
the interior of the shell[ Although uncoupled with the remaining governing equations\ the unknown
function f remains coupled with the other two functions\ c and v2 in the equation is expressing
the boundary conditions\ in number of _ve at each edge[

As was shown previously "e[g[ see Librescu and Stein\ 0880^ Librescu and Chang\ 0881#\ for
simply supported boundaries\ the function f can be rendered decoupled in the boundary condition\
and as a result\ the boundary layer equation "30b# in conjunction with the associated boundary
conditions admits the trivial solution f 0 9[ In such a case eqn "30b# can exactly be discarded and
as a result\ the order of governing equations reduces from ten to eight\ yielding a reduction of the
number of boundary conditions from _ve to four[

4[ Non!linear response of ~at and doubly curved shallow panels with rectangular planform

The non!linear response of doubly curved simply!supported panels of rectangular planform on
the plane P will be analyzed[ The points of s are referred to a Cartesian orthogonal system of
coordinates xv assumed to be parallel to the panel edges[ We consider that the panel is subjected
to] "i# a system of uniform in!plane biaxial compressive edge loads N00 and N11 de_ned by
LR"0N11:N00#\ LR m 9\ depending on whether N11 m 9\ where the positive sign of the normal
edge loads corresponds to compression^ "ii# the uniaxial compressive load N00^ "iii# a lateral
pressure p¼2"xv#^ "iv# a temperature _eld^ and "v# combinations of thermal and mechanical loading
systems[

Depending upon the in!plane behavior in the direction normal to the edges\ three cases\ will be
considered]
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Case "A#] The edges are simply supported and freely moveable in the direction normal to the
unloaded edges in the plane tangent to the surface at the panel edges\ and

Case "B#] The edges are simply supported[ Uniaxial edge loads are acting in the direction of the
x0!coordinate[ The edges x0 � 9\ l0 are considered freely moveable\ the in!plane motion of the
remaining two unloaded edges in direction normal to the edges being prevented[ In the present
case edges x1 � 9\ l1 are referred to as immoveable[

In the case of the panel loaded in the direction of the x0!coordinate only\ the remaining edges
being unloaded and immoveable\ the condition for the immoveable edges x1 � 9\ l1 may be
expressed in an average sense as "see\ e[g[ Librescu et al[\ 0884^ Librescu\ 0864#\

g
l0

9 g
l1

9

v1\1 dx0 dx1 � 9\ "34#

where v1"0b1"x0\ x1\ t# denotes the tangential displacement parallel to the x1!coordinate[ This
equation considered in conjunction with eqns "16#\ "24#\ "20#\ "36# and "35# yields the _ctitious
edge load N11 for which the edges x1 � 9\ l1 remain immoveable[

Corresponding to the immoveable edges xn � const "n � 0\ 1#\ the boundary conditions are]

v2 � Nnt � Mnn � Ft � 9\ Nnn � −Nnn\ "35a#

whereas the ones corresponding to the moveable edges\ xn � const\ these are]

v2 � un � Nnt � Mnn � Ft � 9[ "35b#

Herein n and t designate the normal and tangential directions to the boundary\ implying that n � 0
when t � 1\ and vice versa\ n � 1 when t � 0[

Case "C#] In addition to the previously mentioned tangential edge restraint conditions\ the case
of partially moveable opposite unloaded edges xa � 9\ la is considered[ For this case\ following\
Librescu et al[ "0884# and Librescu "0864#\ a measure of the partial movability of edges xa � 9\ la
"x � 0\ 1# in terms of the edge sti}ness parameter la is de_ned[ As was shown in the above indicated
references\ moveable and immoveable edges xa � 9\ la correspond to la � 9 and la � 0\ respectively[
Partially moveable edges at xa � 9\ la are de_ned by 9 ³ la ³ 0[ As in the case of immoveable
edges\ also in this case\ for a speci_c value of la\ the necessary _ctitious edge load Naa rendering
the edges xa � 9\ la partially moveable has to be determined[

Considerations related with identical ful_lment of the out!of!plane boundary conditions and
implementation of initial geometric imperfections yielding the most critical postbuckling behavior
"see e[g[ Seide\ 0863^ Simitses\ 0875^ Amazigo et al[\ 0869#\ suggest the following representations]

6
v2"x0\ x1^ t#

v�2"x0\ x1# 7� 6
wmn"t#

w� mn 7 sin lmx0 sin mnx1\ "36a#

8
Tý "x0\ x1#

T
0

"x0\ x1#

p¼2"x0\ x1#9� 8
Týmn

T
0

mn

pmn
9 sin lmx0 sin mnx1\ "36b#

where lm � mp:l0^ mn 0 np:l1\ m � 0\ 1\ [ [ [ \ M^ n � 0\ 1\ [ [ [ \ N[
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The tangential boundary conditions are satis_ed on an average "see in this sense Librescu and
Chang\ 0881\ 0882^ Librescu and Lin\ 0885^ Librescu\ 0864#[ To this end\ the potential function c

is represented as]

c"xa\ t# � c0"xa\ t#−
0
1
ð"x1#1N00¦"x0#1N11Ł[ "37#

Here c0"0c0"xa\ t## is a particular solution of eqn "27# determined in conjunction with eqns "36a#\
N00 and N11 denoting the normal edge loads "considered positive in compression#\ see e[g[
Librescu "0864#[

In the case when the shell is supported on the inner surface by a Winkler linear:non!linear
foundation\ the governing equation "30a# has to be considered in conjunction with eqn "33#[

Following the procedure used e[g[ in Librescu and Chang "0881\ 0882#\ the displacement
expansions given by eqn "35a# are substituted into eqn "27# and c0"x0\ x1\ t# is obtained by
solving the resulting linear nonhomogeneous partial di}erential equation[ The remaining governing
equation\ eqn "30a#\ is converted\ via Galerkin|s method\ into a set of non!linear ordinary di}er!
ential equations[ This procedure yields the following non!linear ordinary di}erential equation
governing the postbuckling behavior

Arsw� rs¦Rrswrs¦p¹rsBrs¦P0 ðwrs\ w� rs\ L00\ L11\ K0Ł¦P
0 ðwrs\ w� rs\ Týrs\ T
0

rsŁ¦P1 ðw1
rs\ w� mnŁ

¦P2 ðw2
rs\ w� mn\ K2Ł � 9 S=

r\s
[ "38#

The symbol S= r\s indicates that in the associated expression there is no summation over the indices\
r and s\ where r � 0\ 1\ [ [ [ \ M and s � 0\ 1\ [ [ [ \ N[ In eqns "38#\ P
0\ and P0 are linear\ while P1 and
P2 are\ quadratic\ and cubic polynomials of the unknown modal amplitudes wrs\ respectively^ their
dependence on the various parameters is also indicated in the brackets[ The coe.cients Ars\ Brs\
and Rrs are constants not displayed here that depend on the material and the geometric properties
of the shell^ L00"0N00l

1
0:p

3D# and L11"0N11l
1
0:p

3D# are the normalized forms of normal edge
loads\ p¹rs"0prsl

3
0:"Dh## the dimensionless lateral pressure amplitude\ while K0"0KÞ0l

3
0:p

3D# and
K2"0KÞ2l

1
0:p

3D# are dimensionless Winkler|s foundation moduli[
The static counterpart of eqns "38# enables one to illustrate in the planes "L00\ d¦d9#\ "Tý \ d¦d9#

or "p¼\ d¦d9# the non!linear behavior of geometrically imperfect ~at and curved panels[ In the case
of compressed panels\ another representation enabling one to correlate the theoretical _ndings
with the experimental ones is depicted in the plane "L00\ D0#\ where D0 denotes the average endshor!
tening in the direction of the coordinate x0\ and is de_ned by D0 � −0:"l0:l1# Ðl0

9 Ðl1
9 v0\0 dx0 dx1

which should be considered in conjunction with eqns "16#\ "24#\ "20#\ "36# and "35#[

5[ Vibrational behavior in the pre!postbuckling:limit ranges

Towards studying this problem\ we will restrict our attention to small vibrations w¹w¹ mn"t# about
the static equilibrium position identi_ed by w¹ mn "see Librescu et al[ 0885#[ In this case\ the vibration
amplitude can be represented as



L[ Librescu\ W[ Lin : International Journal of Solids and Structures 25 "0888# 3000Ð3036 3016

wmn"t# � w¹ mn¦w�mn"t#\ "49#

where the time!dependent part w�mn is considered small as compared to w¹ mn and w� mn\ in the sense of

w�1
mn ð"w¹ mn\ w� mn#[ "40#

The dependence of the static part of eqns "49# "de_ning the mean equilibrium position of the shell#
upon the compressive edge loads\ lateral pressure and the thermal _eld can be determined from
the governing equations ðeqns "38#Ł\ by discarding the inertia terms[ The equation of motion for
small vibrations of the composite shell about this position can be obtained by substituting eqn
"49# into eqns "38#\ where the order of magnitude stipulated by eqns "40# should be enforced[

In such a way\ the equation of vibration about the equilibrium position is obtained as

Amnw�
�

mn¦Dmnw
�

mn9\ S=
m\n

"41#

where Dmn 0 Dmn"w¹ mn\ w¹ 1
mn\ w¹ 2

mn\ w� mn\ pmn\ Týmn\ T
0

mnKÞ0\ KÞ2#\ the coe.cient Amn containing all the
information about the thermo!mechanical and geometrical properties of the structure[

Employment in eqn "40# of the representation w�mn"t# � w½ mn exp"ivmnt#\ "i � z−0#\ and keeping
in mind that w¹ mn is obtainable from the static counterpart of eqn "38#\ eqn "41# provides the
interaction between the vibration frequency and the compressive\ lateral and thermal loads in the
pre! and postbuckling ranges " for the perfect panels#\ and in the pre! and post!limit ranges " for
the geometrically imperfect ones#[

6[ Numerical illustrations and discussion

A range of applications involving the non!linear response of simply supported curved panels
exposed to thermomechanical loads is considered[ Their role is to get a better understanding of
the implications brought by the violation of shear traction continuity requirement[ The considered
panels exhibit a square planform projection "of the side lengths l0 � l1 � l#\ and consist of three
layers\ in which the constituent materials exhibit transversely!isotropic thermoelastic properties[

Unless otherwise stated\ one assumes that the core layer is twice as thick as each of the face!
layers[ In addition\ the elastic moduli and thermal compliance coe.cients de_ned in terms of non!
dimensional ratio\ are displayed in Table 0[

The considered numerical data re~ect the fact that the core layer is more shear!deformable than
the face layers\ a behavior which is commonly valid in sandwich!type constructions[ Since the mass

Table 0
Thermoelastic characteristics for the facings and core of the three!layer laminate

E:E? E:G? l:l? l:E n

Faces 4 09 0[3175 −0[04×09−4 in:in:>F 9[1
Core 1 29 0[10302 −3[7764×09−4 in:in:>F 9[1
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density of layers is absorbed in the dimensionless frequency v¹ 1\ this characteristic was not displayed
in Table 0[

In the forthcoming presentations the indices f and c are intended to identify the a.liation of the
quantities a}ected by these indices to the face and core layer\ respectively[

Having in view that for the present analyzed problems the one!term approximation in the
representation of v2 results in the most critical conditions "see e[g[ Refs 29 and 21#\ only mode
"0\ 0# in the bending de~ection has been considered[ Moreover\ the initial imperfection v�2\ pressure
p2 and temperatures Tý and T

0
are represented in the same shape of mode "0\ 0#[ For the sake of

convenience the amplitudes d00"0w00:h#\ d�00"0w� 00:h#\ Tý00 and T
0

00 corresponding to the center of
the panel "x0 � x1 � l:1#\ are denoted in the numerical illustrations as d\ d9\ Tý and T

0
\ respectively[

In addition\ the dimensionless expressions of pressure amplitude and fundamental frequency
"squared# will be denoted in the numerical illustrations as p¼ "�p00l

3
0:Dh# and v¹ 1"0v1m9l

3
0:p

3D#\
respectively[

In the absence of any speci_cation about the character of in!plane boundary conditions\ freely!
moveable edge conditions should be considered[

6[0[ In~uence of a thermomechanical loads on the non!linear response as predicted by the Models I
and II

In Figs 1a and b the static postbuckling response and frequencyÐtemperature interaction of the
geometrically perfect and imperfect "d9 � 9[90# three!layer ~at panels subjected to a pre!existent
system of biaxial compressive edge loads "indicated by the ratio LR"0N11:N00# � 9[0 where L00

is the dimensionless subcritical compressive edge load\ L00 � 9[64"L00#cr#\ and to a uniform through
the panel thickness temperature rise was considered[ Herein and in the forthcoming illustrations\
"L00#cr denotes the dimensionless uniaxial buckling load of the geometrically perfect Kirchho}ean
plate:shell counterpart[

For both the geometrically perfect and imperfect panels\ Model I violating the shear traction
interlaminar continuity condition underestimates the thermal load carrying capacity of the panel[

As concerns the implications of the violation of continuity requirement on the frequencyÐ
temperature interaction\ Fig[ 1b reveals that for the geometrically perfect panels\ in the pre!
buckling range\ Model I underestimates the fundamental frequency[ For the same case\ it can be
seen that the buckling temperature\ corresponding to zero!valued frequency is underestimated by
Model I[ However\ in the postbuckling range\ Model I overestimates the fundamental frequency[
The increase in the fundamental frequency above the buckling temperature is attributed to the
change in the panel geometry that occurs after buckling\ resulting in the increase of the overall
panel sti}ness[

Having in view that for this case\ the increase of the overall sti}ness within Model I occurs prior
to that of the Model II\ in the postbuckling range\ Model I overpredicts the fundamental frequency[
When an initial geometric imperfection is implied\ the fundamental frequency is larger than that
of the perfect panel counterpart[ Moreover\ in the case of the geometrically imperfect panels\ the
initial decay of the fundamental frequency is experienced over a more reduced temperature interval
than in the case of the geometrically perfect panel\ for which the fundamental frequency becomes
zero!valued at the buckling temperature[ After that slight decrease\ a steep increase of the frequency
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Fig[ 1[ "a# Non!linear response of geometrically perfect:imperfect ~at panels subjected to a membrane temperature rise
"T0 � 9# and a pre!existent bi!axial compressive edge load\ LR � 9[0 and L00 � 9[64 "L00#cr\ ll:l1 � 0\ l0:h � 19\ Ef � Ec

"the remaining ones are being displayed in Table 0#\ as predicted by Models I and II[ "b# FrequencyÐtemperature
interaction as predicted by Models I and II for the conditions and characteristics of the panel described in Fig[ 1a[
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with the increase of the temperature amplitude is experienced[ In the latter temperature range\
Model I overestimates the frequency predicted by Model II[

In Figs 2a and b\ a similar scenario as in Figs 1a and b is considered[ However\ in this case\ a
thinner panel than in the previous case\ and in addition\ a core layer featuring a larger transverse
shear sti}ness than that of the face layers are considered[ In these conditions\ Fig[ 2a reveals that
Model I overestimates the thermal carrying capacity of both the geometrically perfect and imperfect
panels\ whereas from Fig[ 2b it results that Model I associated with the perfect panel overestimates
the frequencies in the prebuckling range[ The same trend is valid in the case of geometrically
imperfect panel\ but over a limited range of the temperature rise\ beyond which is underestimates
the frequencies[

From Figs 2a and b it becomes also apparent that\ in contrast to the results highlighted in Figs
1a and b\ the predictions provided by Models I and II are much closer to each other[ This is due
to the fact that in this case the panel is much thinner than in the previous case\ and as a result\ the
static continuity requirement plays a much less important role[

In Figs 3a and b\ the non!linear response of a geometrically perfect circular cylindrical panel
exposed to a dimensionless pre!existent uniaxial compression L00 � 9[64 "L00#cr\ and to a thick!
nesswise temperature gradient is highlighted[ It is supposed that the unloaded straight edges are
either free!moveable "l1 � 9# or immoveable "l1 � 0#[

From Fig[ 3a and its counterpart\ Fig[ 3b\ depicted in the plane "Tý \ D0#\ it results that Model I
overestimates the limit temperature and the severity of the snap through jump as compared to
those predicted by Model II[ The results also reveal that for the same case\ the classical LoveÐ
Kirchho} shell model\ although predicts a lower limit temperature than that provided by the
higher!order shell theories\ underestimates the severity of the snap!through jump[ In the case of
moveable straight edges "l1 � 9#\ a benign non!linear temperature!de~ection dependence\ in the
sense of a monotonous increase of the de~ection with the rise of the temperature _eld is experienced[
The results associated with this case reveal that the predictions supplied by Model I underestimate
the temperature carrying capacity as provided by Model II[ At the same time\ it results that in this
case\ the CLT overestimates the load carrying capacity as predicted by any of the shear!deformable
theories considered in this study[ The results of this graph also reveal that the _rst order shear
deformation theory with K1 � 4:5 provides the closest results to the ones predicted by the Model
II[ In a di}erent context "see e[g[ Librescu and Schmidt\ 0880^ Schmidt and Librescu\ 0883#\ where
a di}erent theory of laminated shells ful_lling the continuity of interlaminar shear tractions was
described\ a similar conclusion was conjectured[ From Fig[ 3b it is also seen that in both cases of
moveable and immoveable straight edges\ Model I overestimates the endshortening when compared
with that predicted by Model II[ At the same time\ the classical shell theory invariably under!
estimates the endshortening[

In Figs 4a and b\ a very thin "l0:h � 099# three!layer spherical cape exposed to a pre!existent
temperature _eld Tu � 69>F and Tb � 699>F and a lateral pressure rise was considered[ It is
supposed that the edges x0 � 9\ l0 and x1 � 9\ l1 feature various degrees of tangential edge restraint\
in the sense that for these edges\ 9 ¾ l0 ¾ 0 and 9 ¾ l1 ¾ 0\ respectively[ The results reveal that
for such a thin panel\ Models I and II provide almost identical non!linear response behaviors[ In
addition\ the results highlight the dramatic e}ects played by tangential edge constraints upon the
panel load carrying capacity[ From this graph it is evident that for fully immoveable edges x0 � 9\
l0 and x1 � 9\ l1 "l0 � l1 � 0#\ a maximum load carrying capacity is obtained[ However\ this
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Fig[ 2[ "a# Predictions by Models I and II of the non!linear response of geometrically perfect:imperfect panels subjected
to a membrane temperature rise "T0 � 9# and a pre!existent bi!axial compressive edge load LR � 9[0 and L00 � 9[64
"L00#cr "l0:l1 � 0\ l0:h � 24\ "E:G?#c � 09\ "E:G?#f � 29\ Ef � Ec\ the remaining ones being displayed in Table 0#[ "b#
FrequencyÐtemperature interaction in the conditions and panel characteristics as described in Fig[ 2a\ as predicted by
Models I and II[
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Fig[ 3[ "a# Non!linear response of an initially compressed three!layer circular cylindrical panel "L00 � 9[64 "L00#cr#\
subjected to a through!the!thickness temperature gradient "l0:Rl � 9\ l1:R1 � 9[0\ l0:h � 14\ l0:l1 � 0\ the thermoelastic
properties being displayed in Table 0#[ The comparisons have concern the HSDT as per the Models I and II\ FSDT
with consideration of K1 � 4:5 and 1:2\ and CLT[ "b# The counterpart of Fig[ 3a displayed in the "Tý \ D0# plane[
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Fig[ 4[ "a# Non!linear response of three!layer spherical cape exposed to a pre!existent thicknesswise temperature
"Tu � 69>F and Tb � 699>F# and a lateral pressure rise\ as predicted by Models I and II[ The panel edges feature various
degrees of tangential edge restraints[ In addition to the thermomechanical characteristics displayed in Table 0\ l0:h � 099\
l0:R0 � l1:R1 � 9[0^ tc � 1tf\ l0:l1 � 0^ Ef:Ec � 09[ "b# FrequencyÐpressure interaction for the panel described in Fig[ 4a[



L[ Librescu\ W[ Lin : International Journal of Solids and Structures 25 "0888# 3000Ð30363023

bene_cial behavior can be associated with a very detrimental one\ namely by a severe snap!through
jump when the limit load is exceeded[ It is also seen that for freely!moveable edges all around the
contour "l0 � l1 � 9#\ the load carrying capacity is much lower\ as compared to that occurring in
the previous case[ However\ this latter behavior is compensated by the occurrence of a much less
severe snap!through jump as compared to that in the previous case[ Figure 4b representing the
dynamic counterpart of Fig[ 4a\ reveals a similar trend\ in the sense that for l1 � l0 � 0 and
l0 � l1 � 9\ maxima and minima fundamental frequencies in both the pre! and post!limit load
ranges are experienced\ respectively[ For intermediate conditions of the immovability:moveability
of the opposite edges\ intermediate static and dynamic response behaviors from the point of view
of the magnitude of frequencies and of the intensity of the dynamic snap!through jump\ are
experienced[

In Figs 5a and b\ a plot of the behavior described within the Models I and II\ of a geometrically
imperfect "d9 � 9[0# circular cylindrical three!layer panel of moderate thickness "l0:h � 09#\ sub!
jected to an increasing uniaxial compressive load is considered[ It is assumed the straight edges
feature various degrees of tangential edge constraints\ implying that on these edges 9 ¾ l0 ¾ 0[

From Fig[ 5a it appears that Model I\ while underpredicting the load carrying capacity of the
panel\ it experiences for l1 � 0\ likewise Model II\ a limit load\ beyond which\ a snap!through
buckling is followed[ From the plot\ it is also evident that Model I underpredicts the severity of
the snap!through jump as compared to that predicted by Model II[

The dynamic counterpart of this graph\ Fig[ 5b\ depicting the fundamental frequencyÐcom!
pressive load interaction reveals a similar trend\ in the sense that Model I\ underestimates the
fundamental frequency in the pre!limit load range\ underestimates the severity of the dynamic
snap!through when the compressive loads increase beyond the limit loads corresponding to the
considered tangential edge constraints\ and overestimates the fundamental frequency in the post!
limit load range[

However\ in the case shown in Fig[ 6 which corresponds also to a moderately thick "l0:h � 09#
three!layer circular cylindrical panel featuring a smaller initial geometric imperfection "d9 � 9[94#\
than in the previous case\ both Models I and II predict\ qualitatively\ similar non!linear behaviors
under the variation of the degree of the tangential edge constraint[ As it can be seen from this
graph\ Model I slightly overpredicts the load carrying capacity[ At the same time\ one can
observe that for l1 � 0 one obtains for both models the same benign non!linear response\ while
corresponding to l1 � 9[25 for Model I\ and to l1 � 9[30 for Model II\ a buckling bifurcation can
be experienced[ Moreover\ in these cases\ for compressive edge loads larger than those cor!
responding to the buckling bifurcation\ a less severe snap!through jump is predicted by Model I
as compared to that predicted by the more exact\ Model II[

6[1[ In~uence of linear:non!linear Winkler|s elastic foundation on non!linear response predicted by
Models I and II

Figure 7a depicts the non!linear response of a geometrically perfect circular cylindrical three!
layer panel\ of moderate thickness "l0:h � 09#\ resting on a linear Winkler foundation "K2 � 9#\
and uniaxially compressed by the edge load L00[ The results con_rm the conclusion highlighted in
Ref[ 00\ according to which the increase of the linear foundation modulus results in the increase
of both the buckling bifurcation and of the load!carrying capacity[ The results also reveal that
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Fig[ 5[ "a# Comparison of predictions as provided by Models I and II on non!linear response of a circular cylindrical
panel subjected to compressive loads applied on its curved edges\ its straight edges experiencing various degrees of
tangential edge constraint "l0:h � 09\ l0:R0 � 9\ l1:R1 � 9[4\ tc:tf � 4\ "E:G?#f � 04\ "E:G?#c � 29\ Ef � 4Ec\ d9 � 9[0\
l0 � 9#[ The remaining data are provided in Table 0[ "b# Fundamental frequency "squared#!compressive edge load
interaction as predicted by Models I and II for the case described in Fig[ 5a[
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Fig[ 6[ Postbuckling response of circular cylindrical panels subjected to uniaxial compressive edge loads as predicted by
Models I and II[ Herein l0:h � 09\ l0:R0 � 9\ l1:R1 � 9[5^ tc:tf � 4\ "E:G?# � 59^ Ef � 09Ec\ d9 � 9[94\ l0 � 9[ Various
degrees of edge constraints on x1 � 9\ l1[

Model I underestimates the bene_cial e}ect played by the linear foundation characteristic upon
the load carrying capacity[ In addition Model I reveals less sensitivity to the variation of K0 as
compared to Model II\ the di}erences between the two model predictions becoming more signi_cant
as the linear foundation modulus increases[ Similar conclusions can be inferred from Fig[ 7b
depicting the frequencyÐcompressive edge load interaction\ in the sense that for small K0 values\
the frequency predictions provided by the two models are rather close to each other[ However\
with the increase in K0\ signi_cative di}erences between the predictions of the two models occur[

The e}ect of the non!linear Winkler|s foundation modulus K2 upon the postbuckling response
of geometrically imperfect circular cylindrical panel uniaxially compressed on the curved edges is
presented in Fig[ 8a[ The results reveal that the non!linear foundation characteristic a}ects only
the postbuckling behavior[ In this respect\ it should be observed that the increase of the hardening
"K2 × 9# non!linear foundation characteristics yields a reduction of the intensity of the snap!
through buckling and even its elimination[ It should be observed that in the case of the non!linear
hardening type foundation "K2 × 9#\ Model I underpredicts the load carrying capacity\ while\ in
the case of the softening type foundation "K2 ³ 9#\ it overpredicts the load carrying capacity[

From Fig[ 8b depicting the endshortening as a function of the increase of the uniaxial compressive
load\ it becomes apparent that for hardening type foundation\ for the same compressive load\
Model I overestimates the endshortening\ while for softer!type foundation it underestimates it[

Figure 8c represents the frequencyÐload interaction counterpart of Fig[ 8a[ The results reveal
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Fig[ 7[ "a# In~uence of the linear Winkler|s foundation modulus as predicted by the Models I and II on the non!linear
response of a uniaxially compressed circular cylindrical panel "l0:h � 09\ l0:R0 � 9\ l1:R1 � 9[4\ tc:tf � 3\ "E:G?#f � 09^
"E:G?#c � 49^ Ef � Ec[ "b# In~uence of the foundation linear Winkler|s foundation modulus as predicted by Models I
and II on frequencyÐcompressive edge load interaction\ for the case described in Fig[ 6a[
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Fig[ 8[ "a# In~uence of the cubic Winkler|s foundation modulus as predicted by Models I and II\ on the non!linear
response of an imperfect "d9 � 9[0# circular cylindrical panel subjected to uniaxial compressive edge loads "l0:h � 29\
l0:R0 � 9\ l1:R1 � 9[5\ tc:tf � 1\ Ef � 09Ec\ K0 � 9\ the remaining data being provided in Table 0#[ "b# Compressive edge
load!end shortening dependence of the case described in Fig[ 8a[ "c# Fundamental frequencyÐcompressive edge load
interaction for the case described in Fig[ 8b[
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again the fact that K2 in~uences solely the post!limit behavior[ The highly bene_cial e}ect of a
hardening type foundation on the frequencyÐload interaction\ in the sense of alleviating the
dynamic snap!through jump\ or eliminating it altogether " for K2 � 5#\ becomes also evident from
this graph[ At the same time\ one can remark that for soft!type foundation\ in the post!limit
range\ Model I underpredicts the fundamental frequency while for hardening!type foundation\ it
overpredicts it[

6[2[ In~uence of the thickness\ tc:tf and transverse!shear G?c:G?f\ ratios on frequencyÐcompressive
ed`e load interaction as predicted by Models I and II

Finally\ in Figs 09 and 00 the in~uence of the relative thickness tc:tf and transverse shear moduli
of the core and face layers\ G?c:G?f\ on the frequencyÐcompressive edge load interaction\ as predicted
by Models I and II is highlighted[ In Fig[ 09 the case of a slightly imperfect "d9 � 9[90# three layer
circular cylindrical panel "l0:R0 � 9^ l1:R1 � 9[5# of moderate thickness "l0:h � 09#\ subjected to
uniaxial compressive edge loads is considered[

The results reveal that in the case of a single layer panel constituted either of the core layer
"tc:tf � �#\ or of the face layers "tc:tf � 9#\ the two models provide\ as it should be\ identical results
for each of these two cases[ For values of the thickness ratio tc:tf � 9\ �\ until a certain value of
the ratio "tc:tc � 09#\ Model I overestimates the frequencies in the pre!limit range\ and under!

Fig[ 09[ In~uence of the thickness ratio tc:tf on the frequencyÐcompressive edge load interaction of geometrically
imperfect "d9 � 9[90# circular cylindrical panels "l0:R0 � 9\ l1:R1 � 9[5# of moderate thickness "l0:h � 09#\ characterized
by "E:G?#f � 2^ "E:G?#c � 59^ Ef � Ec\ as predicted by Models I and II[
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Fig[ 00[ In~uence of the ratio G?c:G?f of transverse shear moduli on the frequencyÐcompressive edge load interaction of
geometrically imperfect "d9 � 9[90# circular cylindrical panels "l0:R0 � 9\ l1:R1 � 9[4# of moderate thickness "l0:h � 09#\
characterized by "E:G?#c � 59\ Ef � Ec\ as predicted by Models I and II[

estimates those ones in the post!limit range[ Moreover\ the result reveal that with the increase of
the core thickness in the detriment of that of the faces\ a continuous increase of the intensity of
the dynamic snap!through jump occurring when the compressive load transcends the limit load is
experienced[ This trend is due to the fact that with the increase of the core thickness\ which in this
case\ features a larger transverse shear ~exibility than the faces\ an overall increase of the transverse
shear ~exibility of the structure is experienced[ Moreover\ as a by!product\ Fig[ 09 reveals that
with the increase of the core thickness in the detriment of that of faces\ a continuous decrease of
the limit loads occurs[ At the same time\ as is readily seen\ with the increase of the core thickness
until that value corresponding tc:tf � 09\ Model I underestimates the limit load\ while for tc:tf × 9\
the opposite trend becomes valid[

Figure 00 highlights the e}ects played by the transverse shear ~exibility characteristics of face
layers relative to that of the core\ measured in terms of the ratio G?c:G?f\ as predicted by the Models
I and II[ For this case\ the core layer features a high transverse shear ~exibility ""E:G?#c � 59#[ The
results of this plot reveal that Models I and II feature strong sensitivities to the variation of
G?c:G?f[ In addition\ it is evident that with the decrease of transverse shear ~exibilities of the faces
as compared to that of the core\ an increase of the frequencies in the pre!limit load ranges is
experienced[

In this graph\ this extreme case occurs for G?c:G?f � 0:01[ The other extreme case corresponding
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to G?c:G?f � 0\ yields the lowest frequency in the pre!limit load range[ For these two cases\ Models
I and II provide almost identical results[ However\ for intermediate values of G?c:G?f\ the results
reveal that Model I underestimates the frequencies in the pre!limit range\ whereas in the post!limit
range an opposite trend becomes valid[ From the same graph it becomes apparent that with the
decrease of the transverse shear sti}ness of the faces as compared to that of the core\ a decrease of
the limit load and an increase of the severity of the dynamic snap!through jump which occur when
the limit!load is exceeded\ can be featured[ In the case of the core featuring lower transverse shear
~exibility\ the results not displayed here " for the static non!linear response see Librescu et al[\
0886\ Fig[ 7#\ reveal that within Model I\ there is a much lower sensitivity of the variation of
frequencies with the variation of the ratio G?c:G?f\ as compared to that experienced within Model II[

Moreover\ with the increase of the transverse shear modulus of the core as compared to that of
the faces\ the disagreement between predictions provided by the Models I and II tends to further
increase[

7[ Conclusions

A number of results highlighting the implications brought by the non!ful_lment of the shear
traction continuity requirement upon the static and dynamic non!linear behavior of laminated ~at
and curved panels exposed to thermomechanical loadings have been presented[

Toward the end of accomplishing such a study\ a simple geometrically non!linear model of
laminated shells "referred to as Model II#\ ful_lling both the kinematic and shear traction inter!
laminar continuity conditions\ as well as the ones postulating the absence of shear tractions on the
external boundary surfaces of the panel\ has been developed[ The results reveal that\ depending
upon the relative transverse shear ~exibility featured by the materials of the core and face layers\
or of their relative thickness\ the violation of the interlaminar shear traction continuity requirement\
yields under:overestimation of the load carrying capacity of the panel or of the vibration frequencies[

In the same context\ such a violation can result also in under:overpredictions of the intensity of
the static:dynamic snap!through jump[

Depending upon the degree of the variation of transverse shear ~exibilities and of the thicknesses
of contiguous layers featuring larger transverse shear ~exibility ratios\ the resulting implications
can be extremely signi_cant[

Such over:underpredictions obtained within the model violating the interlaminar shear traction
continuity requirement can be even exacerbated in some instances involving the presence of
tangential edge constraints or the existence of a linear:non!linear elastic foundation[

It was also shown that in the case of very thin laminated shells\ the ful_lment:violation of the
interlaminar shear traction continuity requirement becomes redundant\ in the sense that the
predictions based on the two models become almost identical[

Another result concerns the classical LoveÐKirchho} model\ which in the most general cases\
overestimates the load carrying capacity of panels\ as well as the vibration frequencies\ and
underestimates the intensity of the snap!through jump[

The results obtained in this study which complement the ones obtained previously in Librescu
and Lin "0885# and Librescu et al[ "0886#\ underline the fact\ that in order to obtain more exact
results on the thermomechanical load carrying capacity of structures and on their vibration
frequencies\ a structural model ful_lling all the continuity requirements should be used[ In addition\
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in studies involving determination of failure conditions in the postbuckling range of laminated
constructions\ wherein prediction of local response characteristics is of prime importance\ only
structural models ful_lling such continuity requirements would be able to supply reliable results
in this respect[

It should be mentioned that all these conclusions concern the case of a perfectly interlaminar
bonding between the contiguous layers of the panel[ However\ when this is not the case\ i[e[ when
a damage of the interlaminar bonding is experienced yielding the possibility of the relative sliding
of two contiguous layers of the laminate or of multiple delaminations\ pertinent considerations in
the modeling of laminated composite structures should be taken[ Theoretical studies on this matter
have been accomplished very recently\ and assessments of the implications induced by such bonding
imperfections can be found in Schmidt and Librescu "0885#\ Cheng et al[ "0885\ 0886a\ b#\ Di
Sciuva et al[ "0886#\ Icardi et al[ "0886# and Chattopadhyay and Gu "0883\ 0885a\ b#[
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Appendix 0] Expression of anisotropic stiffness quantities
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In addition
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In these equations\ hr denotes the distance from the shell mid!surface to the upper surface of the
rth layer "see Fig[ 0#[

Appendix 1] Transversely!isotropic specialized counterparts of stiffness quantities
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Appendix 2] Expressions of the stiffness quantities associated with Model I
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